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Abstract
A MIMO channel measurement campaign with a moving mobile has been conducted in Vienna. The measured

data will be used to investigate covariance matrices with respect to their dependence on time. This document
focuses on the evaluation of a measurement run in a suburban environment including a walk though a tunnel.
The F-eigen ratio is defined expressing the degradation due to out-dated covariance matrices. In addition a SAGE
algorithm is used to proof our results. Illustrating the derived methods, first results based on the measured data
are shown for a suburban scenarios.

INTRODUCTION

All mobile communication systems incorporating multiple antennas on one or on both sides of the
transmission link strongly depend on the spatial structure of the mobile channel. Therefore, a lot of
attention has to be paid to explore and to understand the spatial properties of the mobile channel.
Almost all multiple antenna algorithms, including beamforming, diversity as well as MIMO (multiple-
input multiple-output) techniques are either directly or indirectly based on spatial covariance matrices
and on their properties. A very important point is the stability over time. The longer the covariance
matrices are constant, the longer the averaging interval can be chosen and the more reliable are the
estimates derived from a covariance measurement.
In order to obtain deeper insights, we will evaluate measurement data with respect to covariance matrices.
A wideband MIMO channel sounder was used for the measurement campaign, which was carried out in
Vienna last autumn with a moving mobile station.
This paper is focused on the description of the campaign and the derivation of the mechanisms for
investigating the covariance matrices. Results from a suburban environment are chosen to illustrate the
described methods. Our test scenario includes LOS parts as well as a walk through a tunnel. Main
focus is drawn on the propagation effects in and around this tunnel. Regarding the variety of propagation
effects of such a measurement run it may become a test scenario for multiple antenna algorithms.
Section I and II describe the equipment and the environment of the campaign. Section III derives the
evaluation methods. We show how to extract the covariances from the data, we define a measure for the
discrepancy of covariances called the F-eigen-ratio and we will review our implementation of the SAGE
algorithm for the DoA estimation. These methods are applied to a scenario of the measurement data in
section IV and V. Finally, section VI draws some conclusions.

I. MEASUREMENT SETUP

The measurements were performed by the MIMO capable wideband vector channel sounder RUSK-
ATM, manufactured by MEDAV [1]. The sounder was specifically adapted to operate at a center fre-
quency of 2GHz with an output power of � Watt. The transmitted signal is generated in frequency do-
main to ensure a pre-defined spectrum over �
��� MHz bandwidth, and approximately a constant envelope
over time. In the receiver the input signal is correlated with the transmitted pulse-shape in the frequency
domain resulting in the specific transfer functions. Back-to-back calibration before each measurement
ensured an unbiased estimate. Also, transmitter and receiver had to be synchronised via Rubidium clocks
at either end for accurate frequency synchronism and a defined time-reference.
For studies on MIMO systems, the double-directional nature of the channel must be exploited. Therefore



Fig. 1. Measurement setup at transmit-
ter.

Fig. 2. Measurement setup at receiver
in Weikendorf.

two simultaneously multiplexed antenna arrays have been used at transmitter and receiver.

At the mobile station, it is devised to cover the whole azimuthal range. To this end, a uniform circular
array was developed by Fa. Krenn [2]. It is made of 15 monopoles mounted on a ground plane and was
placed on top of a small trolley (Figure 1). The elements were spaced at ��� ����� ( ��� ��	 cm) resulting in a
diameter of around

�
� cm in the middle of the 
�� cm ground-plane. Attention was paid on a height of

the transmit antenna of about 1.5m above ground which fits the typical height of pedestrians using their
phones. This also matches the COST259 [3] recommendations for mobile terminals.
The receiver was connected to a uniform linear array from T-NOVA, Germany. The antenna is made of
eight patch elements spaced at a distance of

���
� ( 
�� 	 cm).

With above arrangement, consecutive sets of �
	����

transfer functions, cross-multiplexed in time, were
measured every � ��� 	 ms. Due to the nature of the channel sounder the acquisition period of one snapshot
was limited to

� � ����� which corresponds to a maximum path length of about � km.

II. MEASUREMENT ENVIRONMENT

The measurement data used for this paper was conducted during a measurement campaign in Vienna
last autumn. For our evaluations we took a typical suburban area in a small town north of Vienna called
Weikendorf.

For the Weikendorf measurements the receiver was mounted on a lift in about ��� m height (Figure 2)
to fit a typical macro cellular environment. All streets within the coverage area of our equipment were
measured. Therefore the trolley was moved at speeds of about

	
km/h on the sidewalks. This results in a

snapshot resolution of more than 8 snapshots per wavelength
�

, or per doppler cycle, respectively. The
measurement data contains a lot of LOS cases and diffraction over rooftops.

For this work we have chosen a measurement run where the transmitter moves through a pedestrian
tunnel. The run is more or less a LOS scenario with diffraction over rooftops. However, changes of
the propagation parameters may occur in the tunnel. A map of the measurement run can be found in
Figure 3. The Rx-position is marked with a red dot whereas the blue arrow gives the movement of the
transmitter.

III. EVALUATION TECHNIQUES

Most beamforming algorithms are based on the spatial covariance matrices [5] [6] � ��� ��� �"!#� � ,
which contain information about the correlations of the $&% antenna signals. Let '(*),+.- be the $/% � �
antenna data vector. The data covariance matrix is defined as

�103254 '6 ),+.-*7 '6 ),+8-:9<; � (1)



In rich scattering environments and with large element spacings, its structure approaches the identity,
whereas in highly correlated scenarios, e.g. with a present line-of-sight, it is getting more and more
singular. Hence, it represents the spatial properties of the scenario from the signal processing point of
view.
For the wide sense stationarity (WSS) assumption, second order statistics such as the covariance are
constant within a certain time interval. However, a varying environment changes the covariance.
In addition, the covariance depends on the carrier frequency, since the visible array topology relates to
the wavelength.
In this section, we derive, how we will investigate the time dependency in section IV by help of the
sounding measurements.

A. Extraction of Covariances

As already mentioned, the data is available as transfer functions. In the sequel, we will consider the
covariance matrices at the base station. First, we extract a 5MHz band of the total band width of 120MHz
around the center frequency ��� and transform the transfer functions to the time domain. The 5MHz is
a typical bandwidth for third generation systems, e.g. UTRA FDD and UTRA TDD [4]. Starting at a
certain time +�� we set up the covariance matrix by averaging over all values of all impulse responses
within a time interval � + %���� , which should not be too long in order to ensure that WSS holds. Since we
consider the covariance matrix at the base station, we can use the different mobile antennas to increase
the number of available snapshots to achieve a better estimate.
We eliminate the noise contributions by subtracting a noise covariance matrix which is derived from a
separate noise measurement.
Finally, the matrices are corrected by a measured calibration matrix 	 in order to compensate for linear
distortions due to varying properties of the feeder cables, pin diode switches, etc.
The result is a covariance matrix estimate � ),+ ��
 � � - which represents the spatial signature of the complete
impulse response, i.e. of all channel taps, and which is valid for a certain time +�� and for a certain carrier
frequency � � . The covariance matrix is calculated from the channel sounder observations by

� ),+
� 
 ��� - 0 ���� 7 ��� 7 	 9 7 ���������� � �������! �" � ���
#�$�% � � '6 � )'& 
�( - 7 '6 � )'& 
�( - 9*) �,+�+�-. 7 	 (2)

where
� �

and / % is the number of Tx antennas and the number of delay values, 0 �1
 0 ��2 � 
 � � � 
 0 �32 � �
are the snapshot numbers in the time interval 4 +5��6.+7� 2 � + %����98 and �,+1+ is the estimated noise covariance
matrix. The elements of '6 � )'& 
�( - are the ( th impulse response values from transmit antenna : to all
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Fig. 3. Map of the measurement route in Weikendorf



receive antennas of snapshot & , which is the inverse fourier transform of the corresponding transfer
function in the 5MHz frequency band around � � .
B. Measure for Covariance Distance

In order to compare the extracted covariance matrices, we will now define a measure expressing the
discrepancy between two covariance matrices. Since we consider the eigen structure of the covariances,
this measure will be denoted the F-eigen-ratio.
We assume, that the actual environment is described by the unknown covariance matrix � . Instead of
the correct matrix, we have knowledge about another covariance

�� measured in a different scenario,
e.g. at another time instance. If we process

�� and apply the result in the environment � , we will get a
degradation.
Many beamforming techniques are based on the eigenvectors of the signal covariance matrix [5]. Other
methods can be viewed as approximations of the eigen methods [6]. Therefore we introduce the eigen-
value decompositions �� 0 �� 7 �� 7 �� 9 6 � 0 � 7 � 7 � 9 (3)

where
��

and
�

contain all eigenvectors, and
��

and
�

are diagonal matrices with their entries being
the corresponding eigenvalues of

�� and � . Without the loss of generality, we assume unitary matrices��
and

�
.

We define the reduced versions
���� 
 ��� � � � � � ! � of the matrices

�� 
 � to contain the eigenvectors
corresponding to the � largest eigenvalues of the covariance matrices

�� and � , respectively.� �
is used for a low-rank approximation of � . Hence,

� � 0 � 9� 7 � 7 ���
(4)

is a diagonal with the � largest eigenvalues as entries. If we use
����

instead of
���

for the low-rank
approximation of � , we get �
	�
� 0 �� 9� 7 � 7 ����

(5)

which in general is not a diagonal. The traces of the matrices
� �

and ��	�
� are a measure for the

collected power applying the low-rank transforms
�

and
��

. Hence, the quotient of the traces gives
us some knowledge about the power loss in the case of having

�� available only. The F-eigen-ratio is
defined as

��� � ���� � � + 0 ��� 4���	�
� ;����� � ��� 0
� ����� � ��� � � � � 7���� '� 9� 7 � '� � ��� ���� � � � � (6)

with the properties �! � �
� ���� � � +  � and � � � � ��"� � � + 0 � . The second form is the element notation, where

'� � , � '� � and
� � are the columns and diagonals of

� �
,
�� �

and
�#�

, respectively. The term $�'� 9� 7 � '� � $ �
accounts for the mismatch of both eigenbases.
The choice of the parameter � depends on the considered algorithm. In many downlink beamforming
[7] schemes, � 0 � is the only setting of interest, since often a single beam is formed. More beams are
not resolvable with a single receive antenna and therefore would interfere with each other. However,
considering uplink scenarios or MIMO techniques, larger values might give more insights.

C. The SAGE algorithm

In section IV we will compare the consequences of the covariance matrices with direct estimation of
signal directions. We will apply the SAGE (Space Alternating Generalized Expectation Maximization)
algorithm in order to jointly estimate the doppler frequency, the delay, the direction of arrival and the
doppler frequency for a given number of waves.
The technique is based on Expectation Maximization (EM) introduced in [8]. It was shown, that the



maximum likelihood (ML) solution is achieved. In [9] EM was extended to SAGE as an ML parame-
ter estimator for superimposed signals. The resulting implementation is an iterative method similar to
interference cancellation. Signal components are reconstructed with already estimated parameters and
cancelled from the total signal. This reduces the dimension of the ML problem maintaining the ML
performance.
This document follows the proposal of [10], which gives a detailed description how to estimate the men-
tioned parameters for a number of waves given the received signal.
As we have the impulse responses available instead of the received signal, a slight adaptation was neces-
sary. Concatenating the impulse responses inserting a guard period in between, we interpret the resulting
construction as the received signal, where the transmitted pulse shape is assumed to be the response of
the receive filter. In our case, the receive filter is a low pass with a width of 120MHz. We approximate
this as a rectangle yielding a sinc-pulse shape.
Since the SAGE algorithm is not very sensible to the given model order (number of waves to estimate),
it was fixed to 151. The size of the observation window was 43 snapshots

�0 925ms in total, where we
used 3 sequences of 9 consecutive snapshots equally spaced within this window. The first Tx antenna
was used only, as the direction of departure was not taken into account. The initialization procedure was
similar to [10].

IV. RESULTS

In the previous section, we described the mechanisms for evaluating measurement data. Now, we will
show some results where we applied these techniques to the sounding measurements.
Impulse responses of the measurement scenario at + 0 � and with the trolley in the tunnel are shown in
Figure 4 and Figure 5 respectively. The attenuation in the tunnel is about �

	
dB higher than in the LOS

case.
Figure 6 shows the estimated DoAs for the Weikendorf run at different time stamps. In the beginning

there exists a strong LOS component surrounded by weaker scattering paths from trees and buildings.
During the first ��� seconds the trolley moves on and the LOS is still valid but, of course, tracks the
mobil position(Figure 6a and b). When the trolley approaches the tunnel, the LOS gets diffracted at the
entrance and a second path appears (Figure 6c till e). This path has a longer delay and a different DoA
from a direction quite similar to that of our starting position. The path comes from the building which
is marked in the map 3 as a scatterer. Its power is about ��� dB weaker than the former LOS. The walk
through the tunnel lasts for about

�
seconds. During this time the path gets the strongest component. On

the first meters through the tunnel additional scattering paths round the entrance are visible (Figure 6b)
while later on some components near the exit appear (Figure 6e). This components result from trees and
bushes which surround the tunnel. After leaving the tunnel the LOS occurs again but of course now from
a different direction (Figure 6f).
In addition to our geometric results we have also investigated into the eigenvalue statistics of this mea-
�
A larger choice did not lead to a larger number of waves with significant power
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Fig. 4. Impulse response at
�����
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Fig. 5. Impulse response with trolley in the tunnel.



surement run. Therefor the F-eigen ratio, as described above, was used. The covariance matrixes are
computed according to 2. They are averaged over in a window of � " 0 	

� snapshots, which is equivalent
to � + %���� 0 � &���� . The covered distance during that interval is in the range of about

	�� 0 ��� 
 	�� .
In addition to the F-eigen ratio for one and two eigenvalues also the beams formed at + 0 � are plotted
as dashed lines (Figure 8). For this strong LOS-case the F-eigen-ratio for one eigenvalue fits quite well
with the beams at + 0 � till the trolley disappears in the tunnel. This implies that during the first seconds
the F-eigen ratio just describes the run out of the LOS beam at + 0 � . In the tunnel our second path,
as described above, appears from nearly the same direction as the path used as reference for the F-eigen
ratio. Since the strongest eigenvalue is always normalized to one, the slow fading does not influence the
F-eigen ratio. This results in a strong increase of the F-eigen ratio for the time the trolley is in the tunnel.
In addition to the results for the F-eigen ratio at + 0 � we have plotted the F-eigen ratio starting at+ 0 ��� sec (Figure 9). In this case, the F-eigen ratio decreases in the tunnel because the scattered path at
the house is no longer valid as a reference value.

V. INTERPRETATION

Two substantial interpretations can be drawn from the above analysis of the Weikendorf scenario.
First, channel state information (CSI) by eigenvalue statistics only seems to be limited in some case.
This becomes obvious when spatial properties as DOAs or the corresponding spatial eigenmodes come
into the picture. Therefore we simultaneously examine Figures 6 and 7: before and after the tunnel
transit the statistics in Figure 7 exhibits one dominant eigenvalue, whereas Figures 6a and 6f illustrate
two different corresponding beams. Interestingly, during the tunnel transit the dominant eigenvalues
rapidly ”change” between the set of the distinguished beams; this demonstrates the importance of the
two-rank approximation of the channel. The F-eigen ratio analysis strongly confirms this interpretation
both by the above discussed phenomena during the tunnel transit (Figure 8) and by the stability of the
eigen ratio for � 0 � over almost the complete time range of the measurement (Figure 8 and 9).
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Fig. 6. Estimated DoAs and computed beam patterns for six different time stamps of the Weikendorf measurement



VI. CONCLUSIONS

We presented initial evaluations of a wideband MIMO measurement campaign carried out near Vi-
enna. The focus of this document was on the description of the measurement setup and of proposed
evaluation methods which will be used to analyze the measured data in future work.
We defined the F-eigen-ratio which is a measure for the discrepancy of two covariance matrices. The
performance of this measure was illustrated by investigating the time dependence of the measured covari-
ance matrices and comparison of this results to our geometrical investigations. A suburban line-of-sight
scenario, including a tunnel was chosen.
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